9 puntos y 4 rayas
Un reto para reactivar la mente después del verano.
Comienza dibujando 9 puntos dispuestos formando un cuadrado de 3 filas y 3 columnas como la figura.
Se trata de unir los 9 puntos con 4 líneas rectas sin levantar el lápiz del papel, es decir de forma que al final de cada segmento comience el siguiente.
Para ver la solución y saber algo más sobre este desafío haz clic aquí.
Solución:
¿Fácil no?
La mayoría de las personas cuando nos enfrentamos a este desafío tratamos de unir los 9 puntos usando sólo segmentos dentro del cuadrado que forman, pero eso no es lo que pide el reto. La dificultad no forma parte del problema, lo que nos impide solucionarlo rápidamente es que los nueve puntos forman un cuadrado imaginario que impone a nuestro pensamiento límites inexistentes, frenando y bloqueando nuestra imaginación.
Para saber más:
Este reto es un clásico bastante antiguo ya recogido en la "Cyclopedia of Puzzles" de Sam Loyd de 1914 bajo el título "El rompecabezas del huevo de Critoba Colón" ("Christopher Columbus's egg puzzle"). Sam Loyd, nacido en Filadelfia en 1841, fue un gran creador de problemas de ingenio y acertijos de todo tipo, especialmente matemáticos y sobre ajedrez. Es la referencia clásica de la matemática recreativa americana de finales del siglo XIX y principios del XX, divulgado ampliamente por Martin Gardner.
El desafío fue introducido hacia 1970 en los ámbitos de la gestión empresarial y de formación y selección de personal, especialmente en los Estados Unidos. Desde entonces ha sido muy utilizado llegando a dar lugar a la expresión "Pensar fuera de la caja" ("thinking outside the box") como metáfora que significa pensar diferente, de manera no convencional o desde una nueva perspectiva. La frase suele referirse al pensamiento novedoso o creativo y se relaciona con los problemas cuya solución requiere algo de pensamiento lateral, es decir, razonar de una manera indirecta y con un enfoque creativo.
En Archimedes'Laboratory se ofrecen otras soluciones "imaginativas" y alguna generalización de este problema.
No hay comentarios:
Publicar un comentario