sábado, 10 de diciembre de 2016

Las cuatro cartas de Wason

Un problema lógico convertido en experimento psicológico


Cada carta tiene un número en una cara y un rayado en la otra.

El objetivo es, girando el menor número de cartas posible, demostrar la veracidad de la siguiente afirmación:
“Si una carta tiene un número par en una cara, entonces la cara opuesta tiene rayas oblicuas"
¿A qué carta o cartas hay que dar la vuelta para comprobar si es cierta?

Para ver la solución haz clic aquí ▼▲


Otro problema lógico del mismo estilo


Cuatro personas están bebiendo en un bar. A simple vista podemos asegurar que la primera bebe algo sin alcohol, la segunda bebe una bebida alcohólica, la tercera tiene más de 18 años y la cuarta tiene menos de 18 años.

El objetivo es, haciendo el menor número de preguntas posible, determinar si se cumple la siguiente norma:
“Para beber alcohol en un bar se debe tener por lo menos 18 años"
¿A qué persona o personas hay que preguntar sobre su bebida o sobre su edad para comprobar si se está cumpliendo la norma?

Para ver la solución haz clic aquí ▼▲

sábado, 6 de agosto de 2016

Logicómix - Una búsqueda épica de la verdad

Una tragedia con final feliz


Tratar de contar en forma de cómic uno de los empeños más ambiciosos y audaces de la especie humana, como es el intento de llegar a través de la razón a los límites del conocimiento sobre el mundo en que vivimos, no parece una tarea fácil. El resultado conseguido por Logicómix es sorprendentemente eficaz y apasionante.

Esta novela histórica de ficción en forma de cómic creada por Apostolos Doxiadis y Christos Papadimitriou como guionistas, Alecos Papadatos como dibujante y Annie Di Donna como colorista fue publicada originalmente en inglés en 2009 y ha sido traducida a numerosos idiomas. En castellano fue publicada en el año 2011 por Ediciones Sins Entido y de nuevo en 2014 por Salamandra Graphic. Doxiadis es también autor de la novela superventas internacional "El tío Petros y la conjetura de Goldbach" que narra una historia personal desarrollada en el ámbito de las Matemáticas. Es posible establecer una correspondencia entre ciertos elementos de "El tío Petros" y Logicómix que deja patente la marca "Doxiadis". Papadimitriou es profesor de Informática de la Universidad de California en Berkeley y uno de los investigadores más prestigiosos a nivel mundial en el campo de la complejidad computacional. También es autor de la novela "Turing (A Novel about Computation)".

La novela trata de la persecución de la verdad absoluta; de la forma de obtener conocimiento cierto sobre el mundo; de qué es la certidumbre y de qué podemos estar seguros sin lugar a dudas. Los hechos narrados acontecen entre las dos últimas décadas del siglo XIX y el estallido de la Segunda Guerra Mundial. Tomando las Matemáticas como el mayor logro humano en cuanto a exactitud y certeza, la novela relata una de las etapas más intensas del desarrollo de esa ciencia, la de la búsqueda de la esencia de su naturaleza y de sus fundamentos lógicos y, como diría Morris Kline, la de "la pérdida de la certidumbre".
 

El relato, interesado principalmente en los aspectos humanos de los personajes, sus vacilaciones, arrogancias, debilidades, en cómo sus ideas y sus acciones surgen de sus pasiones, plantea la relación entre la construcción de los fundamentos lógicos de las Matemáticas y la locura. ¿Los problemas mentales conducen hacia la búsqueda de la verdad o, contrariamente, la búsqueda de la verdad está abocada a la locura como una maldición divina?
 

Así mismo se explora el choque entre un racionalismo ideal y la compleja realidad, quizá inaprensible para la especie humana, en la que vivimos y de la que formamos parte.

El contexto matemático en el que se desarrolla Logicómix

Aún en nuestros días las Matemáticas son utilizadas frecuentemente, incluso por personas con formación científica, como el paradigma de la exactitud y la certeza. Desde la década de los años treinta del siglo XX los matemáticos saben que no es así.
Desde el nacimiento mismo de las Matemáticas, los matemáticos han perseguido la verdad aplicando con rigor el método deductivo, garantía de la necesidad y universalidad de sus resultados. Los conceptos matemáticos y sus aplicaciones fueron la base de notables teorías científicas para entender el mundo.


Los trabajos sobre los fundamentos de la Matemática de finales del siglo XIX y principios del siglo XX pusieron de manifiesto las limitaciones de la mente humana. Las geometrías no euclídeas desarrolladas al comienzo del siglo XIX forzaron a los matemáticos a admitir la separación entre las Matemáticas y las leyes de la naturaleza. Ello condujo a la duda sobre la certeza de sus creaciones y a una revisión amplia y profunda de las mismas. La consternación fue general al descubrir que las Matemáticas descansaban en unos cimientos poco sólidos; a pesar de ello seguían proporcionando una descripción eficaz de la naturaleza. En la segunda mitad del siglo XIX los matemáticos se dedicaron a la "rigorización de las Matemáticas"; a dotarlas de una estructura lógica inexistente y a reconstruir las partes defectuosas.

Vino vs Cerveza. Francia vs Alemania.
Intuicionismo vs Formalismo.
Poincaré vs. Hilbert.
En 1900 los matemáticos creían haber logrado ya su meta. Antes de terminar de brindar por su éxito, el descubrimiento de las paradojas lógicas y semánticas puso de manifiesto contradicciones en los nuevos cimientos. La resolución de estas contradicciones fue acometida por los principales matemáticos y filósofos de la época que formularon y propusieron diferentes aproximaciones a las Matemáticas: logicismo, platonismo, formalismo e intuicionismo. Todas trataban de resolver las contradicciones conocidas y de asegurar que fuera imposible que aparecieran otras nuevas; trataban de establecer la consistencia de las Matemáticas. En 1931 el desastre se cernió de nuevo cuando Kurt Gödel demostró que a partir de los principios lógicos aceptados por las distintas escuelas es imposible probar la consistencia de las Matemáticas, es decir, es imposible aseguran que las Matemáticas no contengan contradicciones.

Sin embargo, como consuelo, nos queda la pregunta clave de los fundamentos de las Matemáticas: ¿por qué, a pesar de sus fundamentos inciertos, las Matemáticas han demostrado ser tan incleíblemente efectivas?



Una novela compleja sobre la complejidad

La novela, de arquitectura y contenido complejos, se estructura en varias líneas narrativas que se van entretejiendo de forma muy dinámica; cada una de ellas con un estilo gráfico distinto.

La primera es el relato de la creación del propio Logicómix. Utilizando colores vivos y una luz brillante, el cómic y sus creadores aparecen dentro del mismo cómic. Este recuso narrativo con forma de guiño autoreferencial, como la paradoja del barbero de Russell, que también aparecerá más adelante en Logicómix, ayuda mucho a trasmitir las claves de la historia.

En segundo lugar, en colores fríos y con una luz apagada, aparece la conferencia de Bertrand Russell en una universidad estadounidense, en septiembre de 1939, en el contexto del dilema de si los Estados Unidos de América deberían o no unirse a la guerra del Reino Unido contra el nazismo.

Esta conferencia se transforma en la tercera y principal línea narrativa que hace de hilo conductor de toda la novela. Russell expone la historia de la lógica a través del relato de su propia vida, desde niño hasta el momento de la conferencia.


Haz clic aquí para saber ¿Quién es quien?
Este relato comprende su vida personal (curiosidades y temores infantiles, amores, matrimonios, activismo político, miedo a la locura, ...) y sus actividades como matemático, lógico y filósofo en la búsqueda de los fundamentos lógicos de las Matemáticas. A lo largo de esta narración van apareciendo los principales matemáticos y filósofos de la época como Frege, Cantor, Hilbert, Poincaré, Wittgenstein, Gödel o Brouwer, entre otros. Los autores explican en algunas de las viñetas autoreferenciales y advierten en una nota al final de la obra que el cómic no puede considerarse una obra histórica, sino una novela gráfica de ficción, ya que aunque los personajes están basados en los reales, en algunas ocasiones han sacrificado la exactitud de los hechos en aras de una narración con mayor coherencia y profundidad.


La integración entre forma y contenido queda patente a lo largo de toda la obra

Inicialmente sorprende por su audacia la utilización del formato cómic para tratar una temática tan abstracta como es el caso de esta novela. La pregunta "¿por qué en cómic?" es formulada explícitamente por Papadimitriou en el metacómic al inicio de la novela. Doxiadis responde que "¡Es un formato perfecto para protagonistas con grandes aspiraciones!", identificando a los personajes de esta historia con superhéroes fascinantes. Los autores exploran y explotan con gran habilidad las capacidades del formato cómic alcanzando un resultado brillante. Los distintos estilos gráficos utilizados en cada una de las líneas narrativas de la novela funcionan con gran eficacia, aportando claridad al relato; también son usados con maestría para representan los distintos estados de ánimo de los personajes.


El proceso de creación de Logicómix y sus autores aparecen dentro del mismo cómic, como un "metacómic", una autoreferencia del estilo de la de la paradoja del barbero que es relatada en las páginas 166 y 167. La viñeta en la que Annie se imagina a sí misma imaginándose a sí misma, ... muestra de forma muy sencilla y muy elocuente el concepto de autoreferencia recursiva.

En cierto sentido Logicómix es el "Principia" de Doxiadis y Papadimitriou. Puede establecerse un paralelismo entre Logicómix, Doxiadis y Papadimitriou por una parte y "Principia Matemathica", Russell y Whitehead por otra. En el metacómic queda reflejado el proceso de colaboración entre Doxiadis y Papadimitriou en la elaboración de la historia, incluyendo algunas de sus discrepancias.

Presentar la historia contada como una conferencia es una decisión inteligente que además de incorporar un contexto temporal aporta agilidad y es utilizada, con muy buenos resultados divulgativos, para introducir "píldoras" que contienen conceptos matemáticos: lógica, teoría de conjuntos, el infinito, postulado de las paralelas, ... La conferencia pronunciada por Russell tiene todos los ingredientes para ser calificada de magnífico ejemplo a seguir; claro hilo conductor, contenidos conceptuales, notas históricas, anécdotas, toques de humor, hincapié en el lado humano de los personajes mencionados, recapitulación de lo anterior, búsqueda de la implicación del público. Evidentemente todo ello se traslada a la novela.


La Orestiada de los lógicos

En cierto sentido la "Búsqueda" está estructurada siguiendo el esquema de la tragedia clásica griega, con su prólogo, sus episodios y su éxodo final en el que el héroe reconoce su error y donde aparece una enseñanza moral.
La Razón y el Instinto se viligan con recelo
La "Búsqueda" comienza, siguiendo el género épico, como una Odisea sobre las hazañas de los matemáticos y lógicos, que son presentados como héroes, en su lucha por llegar a la verdad absoluta, que juega el papel de Ítaca. Hacia su mitad, en el "Entreacto", la obra se encamina por el género de la tragedia griega, donde encajan perfectamente los reveses sufridos por la obra lógica de Russell debido a los embates asestados por los trabajos de Wittgenstein y Gödel. Finalmente la "Búsqueda", con su final feliz, sigue la senda de la "Orestiada". Profundizando en este paralelismo, la "Búsqueda" puede entenderse como una "Orestida" donde la maldición cae sobre los lógicos en forma de locura. En ambas aparece el enfrentamiento entre la razón y "el instinto, la emoción y el hábito", para finalizar con una moraleja semejante. La de la "Búsqueda" queda recogida en el final de la conferencia de Russell, en su reconocimiento a la idea de Wittgenstein de que "todos los hechos de la ciencia no bastan para entender el sentido del mundo"; no hay fórmulas ni soluciones dadas para enfrentarse a problemas serios de verdad. Ambas tragedias son la metáfora de una transformación: el paso de una sociedad gobernada por los instintos a una sociedad regida por la razón.


Un resultado brillante con aplicaciones didácticas
 
Sin ninguna duda los autores de Logicómix han conseguido, con su buen oficio y su atrevimiento para asumir riesgos, un resultado brillante; una historia interesante contada con eficacia, con un guión muy documentado y una realización gráfica muy elaborada, llena de detalles. A pesar de ser una novela compleja en la forma y en el contenido, su lectura es asequible a un tipo de público muy amplio; se lee de forma fluida y engancha desde el principio. Como toda obra interesante, permite lecturas con distintos niveles de profundidad, todas ellas con sentido completo. En definitiva se trata de una creación audaz, llena de matices, decididamente recomendable para públicos muy variados; desde los interesados en las Matemáticas, la lógica y la filosofía con prejuicios sobre las posibilidades del cómic para desarrollar estos temas, hasta los entusiastas del cómic que se arrugan ante temáticas tan sesudas como las tratadas por Logicómix.

En el ámbito didáctico, Logicómix es un magnífico ejemplo de cómo instruir deleitando; de la conveniencia de la simplificación y del sacrificio de algo de rigor en aras de la claridad; y de los buenos resultados de mostrar el lado humano de los protagonistas de los hechos tratados. Logicómix reúne todos los requisitos para ser explotado didácticamente con alumnos de bachillerato, y posiblemente también de segundo grado de la ESO, desde perspectivas diferentes, en distintas asignaturas; o mejor aún, para aplicar un enfoque de aprendizaje basado en proyectos.


Para saber más:

  • Logicómix - Una búsqueda épica de la verdad. Página oficial (en inglés): http://www.logicomix.com/en/
  • KLINE, Morris: La pérdida de la certidumbre. Siglo XXI Editores. Madrid 1985. http://www.sigloxxieditores.com/libros/MatemAticas/9788432305290
  • DOU, Alberto: Fundamentos de la matemática. Ed. Labor. Barcelona 1970.
  • BARROW, John D.: ¿Por qué el mundo es matemático?. Ed. Grijalbo Mondadori, S.A. Barcelona 1997.
  • Tegmark, Max: Nuestro universo matemático. En busca de la naturaleza última de la realidad. Antoni Boch Editor. Barcelona 2015. http://www.antonibosch.com/libro/nuestro-universo-matematico

jueves, 12 de mayo de 2016

Día Escolar de las Matemáticas 2016

Matemáticas y bicicletas


En el año 2000, Año Mundial de las Matemáticas, se instituyó la celebración del día 12 de mayo como Día Escolar de las Matemáticas por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM). Esta fecha fue elegida en honor a Pedro Puig Adam, figura clave de la didáctica de las Matemáticas en España, nacido el 12 de mayo de 1900.

Cada año esta celebración se dedica a un tema que vincula las Matemáticas con otro ámbito de la vida cotidiana. Este año, el XVII Día Escolar de las Matemáticas está dedicado a las Matemáticas en el deporte, magnífica ocasión para explorar algunas de las múltiples relaciones entre las bicicletas y las Matemáticas.




En 3º y 4º de ESO hemos realizado dos actividades:

Los cambios de marcha de la bicicleta

Hemos investigado la relación entre el número de vueltas de los pedales y el número de vueltas de la rueda trasera, utilizando distintas marchas. Hemos estudiado de qué dependen la velocidad de la bicicleta y el esfuerzo necesario al pedalear.

La cicloide


Al montar en bicicleta, pedalear y hacer girar la rueda trasera, la bici avanza. Si en un momento determinado nos fijamos en el punto de la superficie del neumático que está en contacto con el suelo y seguimos su trayectoria, veremos que el punto gira respecto al eje de la rueda, al mismo tiempo que avanza. A la curva que traza el punto elegido en el neumático se la designa con el nombre de cicloide. Hemos experimentado distintas formas de dibujar cicloides y hemos conocido algunas propiedades de esta curva.

En "Matemáticas II" de 2º de bachiller, encajando perfectamente en la unidad programada que estamos desarrollando, hemos dedicado una sesión de clase a estudiar las ecuaciones de la cicloide y a usar integrales definidas para calcular longitudes y áreas relacionadas con dicha curva.

 
Los materiales preparados para el desarrollo de las actividades están disponibles en este enlace. Y éstos son algunos de los enlaces consultados para su elaboración:

Matemáticas y bicicletas
Cátedra Miguel de Guzmán. Facultad Ciencias Matemáticas. Universidad Complutense de Madrid. Autoras: Natalia Pulido, Esther Sanz y Leonor Solana

Mates y Bicis
Autores: Jorge Pérez Castañosa, Joaquín Alonso Jáuregui y María García Cutando
Alumnos de 1º ESO en el IES Valle del Jiloca (Calamocha - Teruel) durante el curso 2012-2013.


Construcciones GeoGebra:

Para saber más:

lunes, 9 de mayo de 2016

Los barcos en ruta

Divertimiento matemático publicado por José Augusto Sánchez Pérez en 1948

"Entre dos puertos, A y B, existe hace tiempo un servicio regular de barcos, que sigue una ruta fija tanto a la ida como a la vuelta. Cada día, a las 12 del día, sale un barco desde A en dirección a B, y al mismo tiempo otro barco sale desde B en dirección a A. Cada barco tarda en la travesía 6 días y tres horas. El barco que hace la travesía desde A hasta B ¿con cuántos barcos se cruza en el viaje de vuelta?"
Este reto está recogido por José Augusto Sánchez Pérez en su libro "Divertimientos matemáticos", publicado por la editorial Saeta en 1948 en Madrid, como divertimiento 107.

Para ver algunas sugerencias que quizá te ayuden haz clic aquí ▼▲

jueves, 5 de mayo de 2016

"Decálogo de la Didáctica Matemática Media" de P. Puig Adam

El modo intemporal de enseñar Matemáticas

 

Hace unos días, revisando la biblioteca del Departamento, aparecieron de forma fortuita entre algunos libros de la primera mitad del siglo pasado, unos números de la "Gaceta Matemática". Al curiosear su contenido comprobé con deleite que en el fascículo de 1955 correspondiente a los números 5 y 6 del tomo VII de la 1ª serie aparece el "Decálogo de la Didáctica Matemática Media" publicado por Pedro Puig Adam.

Puig Adan (1900-1960), ocupó la cátedra de Matemáticas en el Instituto San Isidro de Madrid desde 1926 hasta su prematuro fallecimiento en 1960. También se hizo cargo de la cátedra de Metodología y Didáctica de la Facultad de Ciencias. Es, por sus contribuciones a la renovación de los métodos de enseñanza, la figura clave de la didáctica de las Matemáticas en España.

Se acerca el día 12 de mayo, fecha en la que la Federación Española de Sociedades de Profesores de Matemáticas celebra el "Día Escolar de las Matemáticas", coincidiendo con la fecha del nacimiento de P. Puig Adam en el año 1900.

Me parece una buena ocasión para traer aquí su "Decálogo de la Didáctica Matemática Media".

DECÁLOGO
DE LA DIDÁCTICA MATEMÁTICA MEDIA
por
P. Puig Adam 

Se me piden normas didácticas. Preferiría despertar una conciencia didáctica; sugerir formas de sentir antes que modos de hacer. Sin embargo por si valieran, ahí van las sugerencias que estimo fundamentales:
  I.- No adoptar una didáctica rígida, sino amoldarla en cada caso al alumno, observándole constantemente. 
 II.- No olvidar el origen concreto de la Matemática ni los procesos históricos de su evolución.
 III.- Presentar la Matemática como una unidad en relación con la vida natural y social.
 IV.- Guardar cuidadosamente los planos de abstracción.
  V.- Enseñar guiando la actividad creadora y descubridora del alumno.
 VI.- Estimular dicha actividad despertando interés directo y funcional hacia el objeto del conocimiento.
 VII.- Promover en todo lo posible la autocorrección.
VIII.- Conseguir cierta maestría en las soluciones antes de automatizarlas.
 IX.- Cuidar que la expresión del alumno sea traducción fiel de su pensamiento.
  X.- Procurar a todo alumno éxitos que eviten su desaliento.

El artículo continúa añadiendo un breve comentario a cada uno de los puntos "para precisar el alcance de cada uno de estos preceptos".

Este decálogo recoge la esencia de las inquietudes pedagógicas y del contacto real con la enseñanza de una mente brillante. En estos tiempos en los que todo cambia tan deprisa agrada comprobar cómo permanecen plenamente vigentes las mejores prácticas de los mejores profesores. Aunque hayan pasado más de 60 años.

Para saber más:
  • Puig Adam, P.: Decálogo de la Didáctica Matemática Media. Gaceta Matemática. 1ª serie Tomo VII, números 5 y 6. Instituto Jorge Juan de Matemáticas y la Real Sociedad Matemática Española. Madrid , 1955. Pág: 130-131, 132-133,134-135.
  • Puig Adam, P.: La Matemática y su enseñanza actual. Ministerio de Educación Nacional. Madrid, 1960.

jueves, 28 de abril de 2016

Matemáticas en Concéntrico 02

Sobre las producciones matemáticas de Charles y Ray Eames, y Christopher Alexander


Hoy arranca el Festival de Arquitectura y Diseño Concéntrico 02, una mirada diferente del centro histórico de Logroño.

Créditos: http://www.concentrico.es
Según la información oficial Concéntrico "Propone descubrir y redescubrir los espacios de interés del Centro Histórico de la ciudad. El Festival invita a recorrer estos lugares mediante instalaciones que crean una conexión entre patios interiores, espacios ocultos y pequeñas plazas que habitualmente pasan desapercibidas en el día a día de la ciudad."

Las Matemáticas forman parte de todos los ámbitos de nuestra vida cotidiana. Matemáticas y arquitectura poseen una larga y fecunda historia conjunta. Algunos proyectos de arquitectura y diseño son un magnífico ejemplo de desarrollo de productos basados en un concepto matemático.

Seguramente la relación más inmediata entra Matemáticas y arquitectura sea la geometría. Como algunos tratados afirman “Toda creación arquitectónica es geometría”. Otros vínculos son menos evidentes. Este artículo pretende, siguiendo el espíritu de Concéntrico, mostrar nexos más ocultos entre algunas instalaciones del festival y las Matemáticas.



En la Plaza de Santa Ana, la instalación ARTEFACTOS, de Daniel Montes y Sara Canalejas, de Cluster Arquitectos,  se basa en la construcción de tres artefactos a partir de 108 piezas tomando como referencia el "Juego de Cartas" ("House of Cards") de los diseñadores Charles y Ray Eames.



Charles y Ray Eames y las Matemáticas


El matrimonio formado por los estadounidenses Charles (1907 - 1978) y Ray (1912 – 1988) Eames ejerció una influencia muy significativa en la arquitectura y el diseño, tanto de muebles como industrial o gráfico, modernos. Algunas de sus creaciones se han convertido en referencias clásicas. La "Silla Eames" es uno de los diseños de muebles más reconocidos del siglo XX, tanto que forma parte de la colección permanente del Museo de Arte Moderno de Nueva York. Los Eames también concibieron y diseñaron exposiciones así como escribieron y dirigieron numerosos cortometrajes.

Algunas de sus producciones están dedicadas a la divulgación de las Matemáticas. Entre ellas destacan:

Exposiciones:


Fue la primera exposición producida por el matrimonio Eames. Patrocinada por IBM, "Matemática: Un mundo de los números ... y más allá" fue expuesta en el "Museo de Ciencia e Industria de California" en Los Ángeles desde marzo de 1961 hasta enero de 1988. Posteriormente en la universidad de diseño "Art Center" en Pasadena, California. En la actualidad se expone en el museo de la ciencia "New York Hall of Science" de Nueva York. El "Museo de la Ciencia de Boston" exhibe una réplica de la exposición.

Su objetivo fue ofrecer a todo el mundo la oportunidad de disfrutar de las Matemáticas y de la belleza de diseño, seleccionado historias e imágenes atractivas de diversas áreas matemáticas como probabilidad, topología, álgebra de Boole, geometría, cálculo y lógica.
 
La exposición sigue siendo considerada en la actualidad como un modelo para la divulgación científica.


Esta exposición también patrocinada por IBM, trató los patrones matemáticos inherentes al crecimiento y su relación con la sucesión de Fibonacci.


Cortos documentales:


Probablemente el cortometraje documental más famoso de los Eames. De acuerdo con su subtítulo "Una película que trata sobre el tamaño relativo de los objetos en el Universo y el efecto de añadir otro cero", presenta el concepto de orden de magnitud basado en factores de diez mostrando la escala relativa de los objetos del Universo.

A partir de un picnic en la orilla del lago en Chicago, en un ambicioso y memorable travelling, la película nos transporta a los bordes exteriores del universo. Cada diez segundos, vemos el punto de partida diez veces más lejos, hasta que nuestra propia galaxia es visible solo como un punto de luz, entre muchos otros. Volviendo a la Tierra a velocidad vertiginosa nos movemos hacia el interior del cuerpo humano con diez veces más de aumento cada diez segundos. Nuestro viaje termina dentro de un protón de un átomo de carbono de una molécula de ADN de un glóbulo blanco de la sangre.

Es un cortometraje de carácter divulgativo muy dinámico, ilustrativo e impactante.


Haz clic aquí para ver la versión original en inglés.

"IBM Mathematical Peepshows" (1961)

El film es una colección de cinco cortometrajes encargados por IBM y creados por Charles y Ray Eames para su inclusión en la exposición "Mathematica: A World of Numbers… and Beyond".

Cada uno de los cinco cortos trata brevemente un concepto matemático, presentándolo de forma divulgativa a través de una simpática animación con voz en off. Una mezcla exquisita del concepto "píldora de información", tan actual, con el aroma de las animaciones de hace más de medio siglo.

Poster:

"Men of Modern Mathematics" (1966)

Cinco años después de la inauguración de la exposición "Mathematica: A World of Numbers… and Beyond", IBM publicó este cartel de grandes dimensiones (0,61 m x 3,66 m) con forma de línea de tiempo.

Basado en el "Muro de la Historia" de "Mathematica", muestra cronológicamente a través de las biografías y trabajos de los matemáticos más destacados el desarrollo de las Matemáticas del mundo occidental entre los años 1000 y 1950. IBM distribuyó este cartel a las escuelas de todo Estados Unidos. Muchos departamentos de Matemáticas de todo el mundo lo siguen mostrado con orgullo en sus paredes.

En 2012 IBM lanzó una aplicación iPad gratuita, desarrollada con la asistencia de la Oficina Eames, basada en este cartel con la línea del tiempo actualizada hasta nuestros días. Puedes descargarla aquí.



Christopher Alexander y las Matemáticas



En la plaza de San Bartolomé, la instalación 02 + 04 = ALEXANDER PLATZ, de Javier Dulín, arquitecto y profesor de Proyectos de Diseño de Interiores de la Escuela Superior de Diseño de La Rioja (ESDIR), se fundamenta en las teorías de Christopher Alexander y su lenguaje de patrones. 



Christopher Alexander es uno de los arquitectos y diseñadores más influyentes de la segunda mitad del siglo XX. Actualmente es profesor emérito de arquitectura en la Universidad de California, Berkeley. A lo largo de los más de 40 años de carrera profesional, Alexander ha desafiado las corrientes imperantes en arquitectura poniendo al ser humano en el centro del diseño. Para ello ha combinado formación científica, investigación arquitectónica, enseñanza y verificación de sus teorías a través de sus construcciones. Sus ideas innovadoras y radicales han extendido su influencia mucho más allá del ámbito de la arquitectura, incluyendo entre otros campos, el diseño urbano, la ingeniería de software y la sociología. 

Nació el 1936 en Viena, Austria, aunque pasó sus primeros 22 años en Inglaterra. Su vinculación con las Matemáticas comienza con su formación académica inicial. Cursó sus estudios en la Universidad de Cambridge, donde obtuvo en 1956 un Máster en Matemáticas antes de licenciarse en Arquitectura en 1958. El mismo año en el que se trasladó a Estados Unidos donde se doctoró en arquitectura en la Universidad de Harvard en 1963.


Sus dos obras más innovadores e influyentes son "A Pattern Language"  ("Un Lenguaje De Patrones") publicada en 1977 junto con sus alumnos Sarah Ishikawa y Murray Silverstein, y "The Timeless Way of Building" ("El modo intemporal de construir") publicada en 1979. Según Alexander "constituyen un todo indivisible"  son las dos mitades de una misma obra que presentan "un lenguaje para construir y planificar" y "la teoría y las instrucciones necesarias para el empleo de ese lenguaje", e "intentan describir una actitud totalmente nueva con respecto a la arquitectura y el urbanismo". En la idea de que los usuarios son más sensibles a sus necesidades que cualquier arquitecto podría ser, Alexander propone un método estructurado que pone la arquitectura al alcance de personas no especializadas profesionalmente en la materia.

Desde el comienzo de sus investigaciones Alexander aplicó sus conocimientos matemáticos y el racionalismo al diseño, culminando en la publicación del libro "Notes on Synthesis of Form" ("Ensayo sobre la síntesis de la forma") en 1964. 

"Notes on Synthesis of Form" (1964)

Trata sobre el arte del diseño, lo que es, y el método para realizarlo. Las matemáticas que subyacen a este método, basadas principalmente en en teoría de grafos y estadística, están totalmente desarrolladas en el extenso apéndice 2. Estas teoría tuvieron una fuerte influencia en los años 1960 y 1970 en ingeniería de software, como por ejemplo en diseño de lenguajes de programación, programación modular o programación orientada a objetos. 


"A city is not a tree" (1965)
"Creo que una ciudad natural tiene la organización de un semirretículo; en cambio, cuando organizamos artificialmente una ciudad, lo hacemos como un árbol"

En este ensayo escrito en 1965, y considerado como una de las bases conceptuales de la renovación del urbanismo de la época, Alexander, aplicando métodos matemáticos de teoría de conjuntos para entender la estructura de la ciudad y su estructura conectiva,  reflexiona en torno a la complejidad de las ciudades tradicionales en contraposición con la simpleza de los desarrollos urbanos contemporáneos. En "La ciudad no es un árbol" está disponible la traducción al castellano de este artículo.


"Tres aspectos de matemática y diseño"

Publicado en 1969 por la editorial Tusquets de Barcelona como número tres de "Cuadernos Ínfimos", agrupa tres artículos fundamentales de la primera etapa investigadora de Alexander donde, según la editorial, trata de "hallar métodos que permitan hacer más lógicas y comprobables las intuiciones del proyectista, acercando así el arte a la ciencia".

  • "Un tema muy solicitado: computadores y diseño". Traducción de "The Question of Computers in Design" (1964)
  • "La ciudad no es un árbol". Traducción de "A City is Not a Tree" (1965), mencionado anteriormente.
  • "Sistemas que generan sistemas". Traducción de "Systems generating Systems" (1967).

Para saber más:


domingo, 14 de febrero de 2016

I love desmos

Mucho más que una calculadora gráfica.


desmos es una herramienta en línea, gratuita para usos no comerciales, que permite de forma interactiva e instantánea representar gráficamente funciones (reales de una variable real) indicadas explícitamente o implícitamente, tanto de forma cartesiana, paramétrica o polar. Desde rectas y parábolas hasta derivadas y series de Fourier.

Abrir la gráfica en desmos
Además de realizar las operaciones habituales de una calculadora científica, desmos representa puntos, desigualdades y funciones definidas a trozos, maneja tablas de valores, muestra máximos, mínimos y puntos de intersección, realiza ajustes estadísticos y resuelve ecuaciones con raíces cuadradas, logaritmos, valor absoluto y más.

La plataforma desmos incorpora un buen número de funciones modelo que aparecen al crear una nueva gráfica. También ofrece un repositorio de materiales matemáticos producidos por los usuarios y otro de creaciones "artísticas" realizadas con desmos.

Lo más interesante desde un punto de vista didáctico es que los controles deslizantes hacen que sea muy sencillo ajustar valores de forma interactiva o animar cualquier parámetro para visualizar su efecto sobre la gráfica. Permite manipular y experimentar para desarrollar la intuición y aprender haciendo. Sin olvidar la posibilidad de generar actividades para ser realizadas por los alumnos, de las cuales desmos ofrece un repositorio, la mayoría en inglés.

Para conservar los escenarios creados es necesario registrase y archivarlos en los servicios de almacenamiento de "la nube" desmos, siendo posible decidor si se quiere, o no, hacerlos públicos.

desmos, además de en línea, también está disponible como aplicación para Android e iOS. En este caso, aunque no se disponga de acceso a la nube desmos, es posible utilizar la aplicación pero no es posible guardar las gráficas generadas. Sí es posible acceder a los ejemplos y modelos que hayan sido "cacheados" previamente.

Una última perla, el complemento ideal para desmos: GIFsmos genera GIFs animados a partir de gráficas desmos.

Sin duda desmos es una excelente herramienta, sencilla, potente y bella; totalmente recomendable. Es fácil quedarse enganchado si la pruebas.

¡Amor al primer mordisco! 

Para saber más:

sábado, 23 de enero de 2016

Una casa con Geometría dinámica

Sobre disección y equicomposición de figuras


Ponerse a hacer reformas en casa es algo aterrador; nunca se sabe hasta dónde llegarán ni cómo acabarán. Por otro lado, llega a ser tedioso ver la casa siempre igual. La casa "D*Haus Dynamic", diseñada por el estudio londinense de arquitectos "D*Haus Company" puede ser una opción. En realidad va mucho más allá.


 


Esta casa "ecológica, versátil y adaptable" está diseñada para cambiar según las condiciones ambientales. Los gruesos muros externos y las pequeñas ventanas se convierten en paredes internas, a la vez que las paredes interiores de vidrio pasan a ser las fachadas. Las puertas se convierten en ventanas y viceversa. Según sus diseñadores "para la época de invierno, la casa en forma cuadrada, con pequeñas ventanas y gruesas paredes, se abraza a sí misma. Para tiempo más cálido, la casa se abre como una flor para permitir que la luz y el aire penetren en el interior del edificio y ofrecer completas vistas panorámicas de los alrededores".

D*Haus Company - D*Table - Ver vídeo
"D*Haus Company" es una firma innovadora que aplica de forma muy original la Geometría al mundo de la Arquitectura y del Diseño, siendo un magnífico ejemplo de desarrollo de productos basados en un concepto matemático. Además de la "casa dinámica" "D*Haus" ha diseñado también mesas y sistemas de iluminación basándose en la misma disección geométrica. 

Curiosamente, aunque las creaciones de D*Haus Company responden al estilo de vida más moderno, son la culminación de una historia que comienza hace más de un siglo.

El acertijo del mercero


Henry Ernest Dudeney (1857-1930) fue un creador inglés de ingeniosos retos y acertijos matemáticos, publicados en las revistas británicas más populares de la época y recopilados posteriormente en distintos libros. Funcionario de la Corona Británica, aunque no fue un matemático profesional sí alcanzó cierta formación matemática y, sobre todo, estuvo dotado de una gran intuición geométrica.

En 1902, Henry Dudeney publicó en el periódico semanal "Weekly Dispatch" un rompecabezas que planteaba un enigma desconcertante: cómo dividir un triángulo equilátero en cuatro piezas para que recolocadas formaran un cuadrado. En 1905 Dudeney realizo sendas presentaciones del problema ante las prestigiosas sociedades científicas "Royal Society" y "Royal Institution" de Londres. El mismo año fue publicado como desafío en el diario de gran difusión "Daily Mail" y según relata el propio Dudeney, después de recibir cientos de posibles soluciones no hubo ninguna correcta.

El reto fue incluido bajo el título "El acertijo del mercero" ("The Haberdasher's Puzzle") como problema número 26 en la recopilación "Los acertijos de Canterbury" ("The Canterbury Puzzles"), libro publicado por Dudeney en 1907, que narra la historia de un grupo de peregrinos con destino al santuario de San Thomas Becket en Canterbury. Los peregrinos se proponen unos a otros rompecabezas para entretenerse durante el camino. 

"El mercero se resistía a satisfacer las demandas de los peregrinos para que propusiera un acertijo. Tanto le insistieron... que al final se decidió, pidiendo que se le diera un paño en el que recortó un triángulo equilátero perfecto.

Luego, mostrándolo a los demás dijo: "¿Es alguno de vosotros tan diestro en el corte de género como yo? Estimo que no. Cada hombre a su oficio, aunque el estudioso puede aprender del lacayo y el sabio del necio. Mostradme, pues, una manera de cortar este trozo de género en cuatro piezas de manera que puedan reunirse formando un cuadrado perfecto".

Tras varios intentos, los más avezados mostraban soluciones cortando en triángulo en ¡cinco piezas! .... pero no en las cuatro que pedía el mercero. Mientras, él los observaba pero permanecía en silencio. Cuando finalmente le pidieron la solución casi recibe una paliza, pues, declaró que la había olvidado.

Al fin, tras varias noches de incertidumbre, el acertijo quedó resuelto".
Dudeney construyó la solución al acertijo en madera de ébano uniendo las cuatro piezas con bisagras de forma que al girar las piezas con un movimiento de la mano se podía pasar de una figura a la otra. Debido a ello se denomina como "disección de Dudeney" al tipo especial de disección de figuras geométricas en la que todas las piezas están conectadas en una cadena por puntos "bisagra", de tal manera que la transformación de una figura a otra puede llevarse a cabo haciendo pivotar la cadena de forma continua, sin cortar ninguna de las conexiones. En inglés de denominan también "hinged dissections" (hinge puede ser traducido como bisagra, gozne o articulación que gira).

Disección de figuras geométricas


Los rompecabezas consistentes en seccionar figuras en piezas y reensamblarlas para formar otra, como el acertijo del mercero, se han convertido en un clásico entre los divertimentos matemáticos. Son disecciones geométricas. El empleo del método de la disección ha sido fundamental en el cálculo de áreas desde los orígenes de la Geometría y también se utiliza frecuentemente en la enseñanza para justificar las fórmulas de cálculo del área de figuras elementales.

Disecciones 2-D

Dos figuras se dicen equicompuestas si cortando de cierto modo una de ellas en un número finito de partes, se puede, al disponer estas partes de otra forma, componer con ellas la segunda figura. Claramente, si dos figuras son equicompuestas tienen la misma área. La pregunta recíproca de si dos figuras con la misma área son equicompuestas no tiene una respuesta tan evidente.

El teorema de Wallace-Bolyai–Gerwien establece que tiene una respuesta afirmativa en el caso de los polígonos: Si dos polígonos tienen igual área uno de ellos se puede dividir en partes de forma que es posible componer el segundo trasladando y rotando las piezas obtenidas en la disección. Polígono quiere decir, en este contexto, una figura limitada por un número finito de líneas quebradas formadas por un número finito de segmentos rectilíneos. Puede tener "agujeros". Lo importante es que sea posible dividir la figura en un número finito de triángulos.

La atribución de la autoría original de la demostración es una historia enrevesada. El matemático húngaro Farkas Bolyai demostró el anterior teorema en 1832 y el militar alemán aficionado a las Matemáticas P. Gerwien dio una demostración en 1833 sin tener conocimiento de la de Bolyai. Hay indicios de que el matemático escocés William Wallace ya había dado una demostración en 1807.

Según el teorema de Wallace-Bolyai–Gerwien en el caso de los polígonos es equivalente equicomposición y tener la misma área.

Disecciones 3-D

Si damos el salto de dimensión 2 a dimensión 3 nos preguntaremos si con los poliedros pasa algo análogo. Dos poliedros se dicen equicompuestos si al cortar de cierto modo uno de ellos en un número finito de piezas poliédricas, se puede, al disponer estas piezas de otra forma, componer con ellas el segundo. De forma semejante al caso de los polígonos, claramente, si dos poliedros son equicompuestos tiene el mismo volumen. En este caso la pregunta recíproca de si dos poliedros con el mismo volumen son siempre equicompuestos tiene respuesta negativa.

Se trata de un problema difícil; el tercero en la famosa colección de 23 problemas compilados por Hilbert para la conferencia en París del Congreso Internacional de Matemáticos de 1900 con el objeto de estimular la investigación matemática durante el nuevo siglo. El propio Hilbert, basándose en trabajos de Gauss, ya conjeturó la imposibilidad de equicomponer algunos poliedros del mismo volumen. Y en el mismo año 1900, el matemático Max Wilhelm Dehn, nacido en Alemania y alumno de Hilbert, demostró como contraejemplo que el cubo y el tetraedro del mismo volumen no son equicompuestos.

Según el teorema de Dehn en el caso de los poliedros no es equivalente equicomposición y tener el mismo volumen.

Fuera de Euclilandia

Si abandonamos el mundo euclídeo tenemos que, tanto en la geometría hiperbólica como en la esférica, en dos dimensiones para los polígonos sigue siendo equivalente tener la misma área y ser equicompuestos. Pero en ambas geometrías sigue siendo desconocido que sucede en tres dimensiones; no se sabe si para los poliedros es equivalente o no, tener el mismo volumen y ser equicompuestos.

"Rompecabezas" de otro tipo

Anteriormente hemos hecho referencia a teoremas y conjeturas, acabaremos mencionando una paradoja, un resultado aparentemente contrario a la lógica pero demostrado de forma totalmente rigurosa. La "Paradoja de Banach-Tarski" establece que en tres dimensiones es posible descomponer una esfera en un número finito de piezas (se ha demostrado que son suficientes 5 y que con 4 es imposible) de forma que utilizando únicamente movimientos rígidos (sin deformar las piezas), pueden ser reensambladas para componer dos copias de la esfera original. De manera informal se suele decir que "Un guisante puede trocearse y reensamblarse para formar el Sol".

Las aparentes contradicciones de esta paradoja con nuestra intuición y con los resultados comentados anteriormente no es tal si consideramos que las piezas en las que hay que dividir la esfera "no tienen medida". Las piezas obtenidas en la descomposición tienen una forma tan extraña que no tiene sentido hablar de su volumen.

Además la demostración de la paradoja de Banach-Tarski necesita del axioma de elección por lo que no ofrece una solución constructiva al contrario que la "D*Haus Dynamic" con la que comenzábamos. ;-) 


Para saber más:
  • Boltianski, V.G.: Figuras equivalentes y equicompuestas. Lecciones Populares de matemáticas, Ed. Mir, Moscú 1981.
Esta entrada participa en la Edición 6.X "El grafo" del Carnaval de Matemáticas, cuyo anfitrión es el blog Cifras y Teclas